Inductive Sequences

Remember that inductively defined sequences are not as scary as they look. Just remember to read $u_{n+1} = 2u_n + 3$ as "The next number in the sequence is twice the previous term plus three". You will also need a starting value like $u_1 = 4$. Therefore this example would yield $4, 11, 25, 53, 109, \ldots$

1. Find the first five terms in the following inductively defined sequences.

	(a)	$u_{n+1} = 3u_n - 1$ with $u_1 = 7$.	7, 20, 59, 176, 527
	(b)	$u_{n+1} = 2 - u_n$ with $u_1 = 2$.	2, 0, 2, 0, 2
	(c)	$u_{n+1} = \frac{1}{u_n}$ with $u_1 = 4$.	$4, \frac{1}{4}, 4, \frac{1}{4}, 4$
	(d)	$u_{n+1} = u_n + 1$ with $u_1 = k$.	k, k + 1, k + 2, k + 3, k + 4
	(e)	$u_{n+1} = 2 + \frac{3}{u_n}$ with $u_1 = 1$.	$1, 5, \frac{13}{5}, \frac{41}{13}, \frac{121}{41}$
	(f)	$u_{n+1} = 2^{u_n} - 1$ with $u_1 = 2$.	$2, 3, 7, 127, 1.70 \times 10^{38}$
	(g)	$u_{n+1} = 3^{u_n} - 2^{u_n}$ with $u_1 = 2$.	$2, 5, 211, \ldots$
	Now	with the next term being dependent on the previous two terms	
	(h)	$u_{n+1} = u_n + 2u_{n-1}$ with $u_1 = 1$ and $u_2 = 2$.	1, 2, 4, 8, 16
	(i)	$u_{n+1} = \frac{1}{u_n} + \frac{1}{u_{n-1}}$ with $u_1 = -1$ and $u_2 = 3$.	$-1, 3, -\frac{2}{3}, -\frac{7}{6}, -\frac{33}{14}$
	(j)	$u_{n+1} = \frac{1}{u_n + u_{n-1}}$ with $u_1 = -1$ and $u_2 = 3$.	$-1, 3, \frac{1}{2}, \frac{2}{7}, \frac{14}{11}$
	(k)	$u_{n+1} = u_n + u_{n-1}$ with $u_1 = a$ and $u_2 = a^2$.	$a^2, a^2 + a, 2a^2 + a, 3a^2 + 2a$
2.	Find	the specified term in each sequence (fully simplified, of course).	
	(a)	$u_{n+1} = \frac{2}{u_n} + 1$ with $u_1 = 3$, find u_4 .	$\frac{21}{11}$
	(b)	$u_{n+1} = \frac{2}{u_n} + 1$ with $u_1 = x$, find u_4 .	$\frac{5x+6}{3x+2}$
	(c)	$u_{n+1} = \frac{1}{u_n+1}$ with $u_1 = 3$, find u_4 .	<u>5</u> 9
	(d)	$u_{n+1} = \frac{2}{u_n+3}$ with $u_1 = x$, find u_4 .	$\frac{6x+22}{11x+39}$
	(e)	$u_{n+1} = \frac{1+u_n}{1-u_n}$ with $u_1 = 2$, find u_5 .	2
	(f)	$u_{n+1} = \frac{1+u_n}{1-u_n}$ with $u_1 = k$, find u_5 .	k
	(g)	$u_{n+1} = \frac{2+u_n}{3+2u_n}$ with $u_1 = x$, find u_4 .	$\frac{21x+34}{34x+55}$
	(h)	$u_{n+2} = \frac{1}{u_{n+1}+u_n}$ with $u_1 = x$ and $u_2 = y$, find u_5 .	$\frac{y^3 + 2xy^2 + x^2y + y + x}{2y^2 + 3xy + x^2 + 1}$
2	Find	the first five terms of the following sequences. I expect them	to be fully enrealled

3. Find the first five terms of the following sequences. I expect them to be fully cancelled down fractions (or, obviously, whole numbers).

(a) $u_{n+1} = 2u_n - 1$ with $u_1 = 3$.	3, 5, 9, 17, 33
(b) $t_{n+1} = 3t_n + 1$ with $t_1 = \frac{1}{3}$.	$\frac{1}{3}$, 2, 7, 22, 67
(c) $a_{n+1} = 1 - 5a_n$ with $a_1 = 4$.	4, -19, 96, -479, 2396
(d) $u_{n+1} = \frac{1}{u_n+2}$ with $u_1 = 1$.	$1, \frac{1}{3}, \frac{3}{7}, \frac{7}{17}, \frac{17}{41}$
(e) $\theta_{n+1} = \frac{\theta_n + 1}{\theta_n}$ with $\theta_1 = 1$.	$1, 2, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}$
(f) $\psi_{n+1} = 1 + \frac{2}{\psi_n}$ with $\psi_1 = 3$.	$3, \frac{5}{3}, \frac{11}{5}, \frac{21}{11}, \frac{43}{21}$
(g) i. $\alpha_{n+1} = \frac{\alpha_n - 1}{\alpha_n + 1}$ with $\alpha_1 = 5$.	$5, \frac{2}{3}, -\frac{1}{5}, -\frac{3}{2}, 5$
ii. What would the $123^{\rm rd}$ term of this sequence be?	$-\frac{1}{5}$
(h) $u_{n+1} = 1 + \frac{1}{u_n}$ with $u_1 = k$.	